Wind Tunnel and Field Measurements for Aerial ASAE Nozzles

Andrew Hewitt Clint Hoffmann Jane Barber Jim Brown Bill Bagley

Paper No. AA03-006 2003 ASAE/NAAA Technical Session Reno, NV 08 December 2003

Summary

- Different droplet size analysis systems produce different data – some have ASTM standards for measurement and calibration
- Wind tunnels versus field measurements
- Examples of drift classification for different sprays

Introduction

- Future pesticide labels will require specific droplet size categories for drift minimization and spray optimization using ASAE classification system
- Different droplet size analyzers produce different data for the same nozzles and sprays – Malvern, PMS, PDPA, Image Analysis, etc
- Different wind tunnels produce different data
- Wind tunnels differ from field droplet sizing using DropletScan, Swath Kit and other intrusive sampling approaches

Wind Tunnel Versus Field Measurements

- Large field study in Texas with USDA, SDTF, Mosquito Control Industry and others using ASAE reference nozzles, water v oil (evaporation effects), various collectors, two aircraft types, field droplet sizing systems
- Apply same sprays in wind tunnel at same wind speed – ongoing tests with actual test substances
- Develop correlation between field and wind tunnel droplet sizing

Future Field Droplet Sizing

- Labels will specify droplet size required, based on wind tunnel data before evaporation and in controlled environment (field work difficult to control meteorological and application conditions)
- Wind tunnel data useful for some tank mixes and nozzles, but impossible to test every actual aircraft setup, boom length effects, multiple tank mixes etc
- Correlation between wind tunnel and field will allow both systems to be used as complimentary to each other to provide maximum information

Example of Modified ASAE Analysis

- Applied Roundup with and without polymer and invert suspension adjuvants in wind tunnel droplet sizing tests
- CP deflector nozzle, 120mph flight speed simulation, laser diffraction particle sizing to resolve down to 4 μm in non-intrusive sampling environment with laminar flow wind tunnel
- NOTE: One polymer selected as an example from hundreds on the market behavior with different polymers will differ from that observed here.

Data Analysis

- Measured droplet size spectra (3 replicates per treatment)
- Ran droplet size spectra through AgDRIFT in aerial application simulation (with regulatory version model defaults) to assess off-target spray movements and deposition including application, meteorological, environmental and evaporation effects
- Analyzed droplet size data with proposed modified ASAE classification approach for drift potential
- This is only an example behavior with different nozzles, products, and different AgDRIFT input values will differ from behavior seen here

Drift Potential (from Teske <u>et al</u> NAAA paper 2003)

Drift Potential = 0.00126534

 $+ 0.000074433 D_{V0.1}$

- 0.00000337 D_{V0.5}

- 0.0000186 D_{V0.9}

 $+ 0.3397122 F_{141}$

Emission Droplet Size Spectra for Roundup with Different Adjuvants

Airborne Drift - AgDRIFT

Off-Target Deposition - AgDRIFT

(Similar Effect could be shown for Nozzle Type – All these aerial sprays have VMD of 300 µm)

Same VMD, Different "Fines"

Invert Suspension

Polymer

Airborne Drift - AgDRIFT

Drift Potential for Roundup With and Without Adjuvants

